Cloud computing plays a significant role in making the best possible choices for IoT devices. A cloud-based framework helps developers create, deploy and manage their applications easily, such as acting as an application data platform, developing an application to scale, supporting millions of user interactions, and more. It can store large quantities of information and conduct analytics, generating powerful visualizations.
Then there is edge computing, meaning that outside of a centralized data center, and perform software, utilities, and computational data analysis closer to end-user. The Internet of Things is associated closely with Edge computing. It is a step back from the trendy computing cloud paradigm, where all the exciting bits occur in data centers. Rather than using local resources to collect and send data to the cloud, decisions are taken place on local servers.
Read more about Edge AI Implementation
Autonomous Vehicles: Self-driving cars can gather vast volumes of information and make real-time choices on or near the road for passengers' and others' safety. In-vehicle response times, latency problems could trigger millisecond delays — a scenario that could have profound consequences.
Smart Thermostats: They produce very little data from these devices. Besides, some of the information they gather, such as the times of day people come home and change the heat, may affect privacy. It is feasible to keep the data at the edge and help reduce safety issues.
Traffic lights: Three characteristics of a traffic light make it a strong candidate for edge computing: the need to respond to real-time changes, relatively low data output, and occasional internet connection losses.
Conventional Applications: It's challenging to think of a traditional application needing edge infrastructure efficiency or responsiveness. It could save some milliseconds, it takes an app to load or respond to requests, but the cost is rarely worth the change.
Video Camera Systems: Videos produce loads of details. It's not feasible to process and store the data at the edge because it would require a broad and specialized infrastructure. Storing the data in a centralized cloud facility would be much cheaper and easier.
Smart Lighting Systems: Systems that allow you to monitor lighting over the internet in a home or office don't produce many details. Yet light bulbs tend to have minimal processing power - including smart ones. There are also no ultra-low latency criteria for lighting systems — it is probably not a big deal if it takes a second or two for your lights to turn on. We can build edge infrastructure for managing these types of systems, but sometimes it's not worth the cost.
Click to explore about Drivers of Edge Computing and Edge AI
Smart homes, cars, equipment, and everything else create an enormous amount of data. The IoT sector is growing at a great pace day by day, and most probably, we are heading into a future where every device is connected. Demand for computer power for devices is also increasing; cloud computing offers decentralized storage solutions for faster and cheaper deployments and makes it easy. For doing this, Developers only need to connect their systems to IoT cloud platform existing infrastructure to benefit from third-party computing power.
Internet of things generates a huge amount of data. Developers and organizations understand their customers' needs better through it. Cloud services offer a protected environment where it is possible to analyze, monitor, and store certain information. Many services, including machine learning algorithms that model insights from data and allow automation, are already equipped with AI capabilities.
A breach of security in IoT networks may compromise entire companies and industries, impacting millions of connected devices and individuals using them. Because of their remote location and security policies, cloud storage is harder to target. In the future, before they even appear, devices can use previously collected data to detect vulnerabilities.
The cloud facilitates system and application connectivity, transmitting data between data centers and local nodes easily. For offline communication and micro-operations, fog and edge computing can be beneficial, reducing operating costs and increasing speed.
Read more about What's the Difference Between Cloud, Edge, and Fog Computing?